

GBLG2660Txx

Fourth Generation 2 x 180A or 1 x 360A Brushless Motor Controller with optional Ethernet

Roboteq's GBLG2660Txx is a feature-packed, high-current, high efficiency, dual or single channel controller for Brushless DC motors. It is a direct replacement for the company's popular GBL2660Txx, using a 4th generation processor and implementing many performance, algorithmic, and other qualitative enhancements. The controller supports a large selection of rotor position sensor types in order to generate smooth continuous rotation. The controller can be commanded via serial, USB, Analog or Pulse signals. Multiple controllers can be networked over a low-cost, twisted pair CANbus networks.

The GBLG2660Txx uses the latest motion control technology, such as field-oriented control (FOC), acceleration/velocity Feedforward, and fast loop frequency to deliver quick and precise motion control in speed, torque or postilion modes. Numerous safety features, including Safe Torque Off (STO) are incorporated into the controller to ensure reliable and safe operation. For mobile robot applications, the controller's two motor channels can either be operated independently or mixed to move and steer a vehicle.

The controller's operation can be extensively automated and customized using its built-in scripting language. The controller can be configured, monitored and tuned in real-time using a Roboteq's free PC utility. The controller can also be reprogrammed in the field with the latest features by downloading new operating software from Roboteq.

Applications

- Automatic Guided Vehicles
- Small Electric Vehicles, Electric Bikes
- Terrestrial and Underwater Robotic Vehicles
- · Police and Military Robots
- Hazardous Material Handling Robots
- Balancing Robots
- Telepresence Systems

Key Features

- USB, Serial, 0-5V Analog, or Pulse (RC radio) command modes
- RS232 and RS485 serial ports
- Optional 10/100 Ethernet
- MODBUS ASCII and RTU Support over RS232 or RS485. MODBUS TCP Support over Ethernet (Refer to Modbus Manual for the supported functions)
- CAN bus up to 1 Mbit/s. Multi-Protocol support
 - CANOpen DS402
 - RoboCAN Meshed Network
 - RawCAN Customizable to Any Protocol
- Auto switch between Serial, USB, CAN, Ethernet, Analog, or Pulse based on user-defined priority
- Built-in dual 3-phase high-power drivers for two brushless DC motors
- 2x180A Max, 2x120A continuous Current with I2T protection algorithm
- Programmable current limit up to 180A (360A on single channel version) per motor for protecting controller, motor, wiring and battery.
- Output channels can be paralleled in order to drive a single motor at up to 360A (Requires special firmware)
- 97% or better typical Efficiency
- Supports Surface Permanent Magnet (SPM) motors or Internal Permanent Magnet (IPM) motors
- Multiple Motor Operating mode
 - Trapezoidal with Hall Sensors
 - Sinusoidal with Hall+Encoder
 - Sinusoidal with Encoders
 - Sinusoidal with Hall Sensors
 - Sinusoidal with Absolute Encoder
- Support for absolute angle encoders
 - Sin/Cos analog
 - SSI (single-turn and multi-turn)
 - Resolver

- Field Oriented Control in Sinusoidal modes
- Full forward & reverse motor control. Four quadrant operation. Supports regeneration
- Operates from a single 14V-60V power source
- STO Safe Torque Off support
- Accurate speed and Odometry measurement using Hall Sensor or Encoder data
- Up to 8 Analog Inputs for use as command and/or feedback
- Up to 8 Pulse Length, Duty Cycle or Frequency Inputs for use as command and/or feedback
- Up to 10 Digital Inputs for use as Deadman Switch, Limit Switch, Emergency stop or user inputs
- Inputs for up to 2 Quadrature Encoders
- 4 general purpose 1.5A open collector outputs for brake release or accessories
- Custom scripting in Basic language. Execution speed up to 100000 lines per second
- Selectable min/max, center and deadband in Pulse and Analog modes Selectable exponentiation factors for each command inputs
- Trigger action if Analog, Pulse, Encoder or Hall counter capture are outside user selectable range (soft limit switches)
- Open loop speed control operation
- Closed loop speed, position and/or torque control
- Closed loop position control with encoder, hall sensors, analog or pulse/frequency feedback
- Cascaded Speed, Position, Torque PID loops
- High-Performance 16kHz Current Control loop
- Automatic Tuning of Torque, Speed and Position loops
- Automatic Field Weakening for maximum Speed & Torque
- Automatic Motor Characterization
- Advanced performance optimization algorithms (Anticogging, notch filter, Decoupling control, ...)

- Support for NTC temperature sensors through analog inputs (requires an external pull-up resistor)
- Configurable Data Logging of operating parameters on Serial Outputs for telemetry or analysis
- Separate Programmable acceleration and deceleration
- Built-in Battery Voltage and Temperature sensors
- Optional 12V backup power input for powering safely the controller if the main motor batteries are discharged
- Power Control wire for turning On or Off the controller from external microcomputer or switch
- Regulated 5V output for powering RC radio, RF Modem, sensors or microcomputer
- Separate Programmable acceleration and deceleration for each motor
- Ultra-efficient 1.2 mOhm ON resistance MOSFETs (0.6 mOhm on Single Channel)
- Stall detection and selectable triggered action if Amps is outside user-selected range
- · Short circuit protection
- Overvoltage and Undervoltage protection
- Watchdog for automatic motor shutdown in case of command loss
- Overtemperature protection
- Diagnostic LED indicators
- Efficient heat sinking. Operates without a fan in most applications.
- · Built-in conduits for liquid cooling
- Dustproof and weather resistant. IP40 rating
- Power wiring using High Current M6 screw terminals
- 210mm x 145mm x 60mm
- -10° to +70° C operating environment
- Weight: 6.5 lbs (2940g)
- Easy configuration, tuning and monitoring using provided PC utility
- Field upgradeable software for installing latest features via the Internet

Orderable Product References

Reference	Channels	Amps per Channel (Peak/Cont.)	Volts	Ethernet
GBLG2660T	2	180/120	60	No
GBLG2660TE	2	180/120	60	Yes
GBLG2660TS	1	360/240	60	No
GBLG2660TES	1	360/240	60	Yes

Warning

A dangerous uncontrolled motor runaway condition can occur due to various reasons, including, but not limited to: command or feedback wiring failure, configuration errors, faulty firmware, errors in user scripts or programs, or controller hardware failure.

Users must be aware that such failures can occur and must ensure the safety of their system under all conditions. Roboteq will not be held liable for any damage or injury resulting from product misuse or failure.

Important Note

All products are not serviceable. If damage is suspected, the item must be replaced rather than repaired.

Attempting to service or repair the product voids any existing warranty and may pose safety risks.

Consult customer support for more information on replacements.

Power Terminals Identifications and Connection

Power connections are made by means of high amperage power terminals located at the top of the controller, as shown in Figure 1

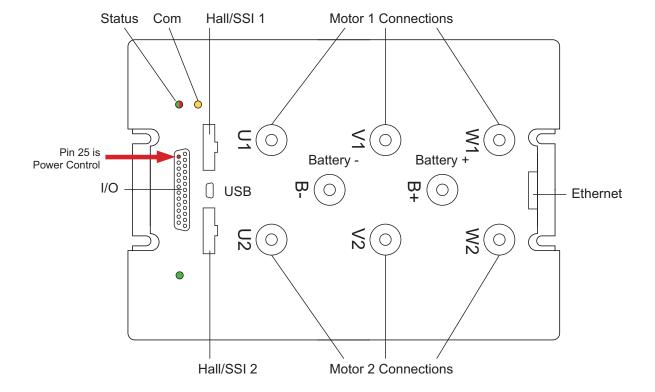


FIGURE 1. GBLG2660Txx Connectiors and Terminals location

The diagram in Figure 2, below, shows how to wire the controller in a dual motor configuration, and how to turn power On and Off.

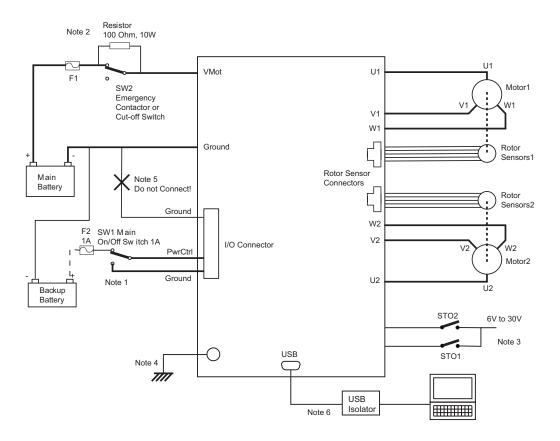


FIGURE 2. Powering the Controller. Thick lines identify MANDATORY connections

Caution

4

Carefully follow the wiring instructions provided in the Power Connection section of the Roboteq Controllers User Manual The information on this datasheet is only a summary.

Mandatory Connections

It is imperative that the controller is connected as shown in Figure 2 in order to ensure a safe and trouble-free operation. All connections shown as thick black lines line are mandatory.

Emergency Switch or Contactor

The battery must be connected Permanently to the controller's VMot tab via a high-power emergency switch or contactor SW2. The user must be able to deactivate the switch or contactor at any time, independently of the controller state. SW2 should be used only in emergency situations and not for normal operation. Opening SW2 while the motors are rotating can lead to permanent hardware damage. Use a suitable high-current fuse F1.

Power On/Off Switch

The controller must be powered On/Off using switch SW1 on the Power Control pin.

Note 1: To ensure motor operation with weak or discharged batteries, connect a second battery to the Power Control pin via the SW1 switch. This will keep the controller alive and responding even if no voltage is present on the VMot terminal.

Precharge Resistor

The controller has internal capacitance which will cause a brief yet significant current inrush the moment power is applied.

Note 2: If there is a concern that this current can overload the power supply, fuse and/r the contactor, insert a precharge resistors as shown in figure 2. For precharging to take place, the controller must be turned off by grounding the Power Control pin.

Enable Safe Torque Off

Note 3: When STO is enabled (STO jumper removed), the motor will be prevented from running until both of its STO inputs are connected to a voltage of 6V or higher. If one or both STO lines are left floating or grounded, the drive will be ON and able to communicate, but the motor will not be driven. For more details, refer to the STO chapter further down in this document and consult the Roboteq Controllers User Manual.

Regeneration Protection and Braking

During rapid deceleration, the kinetic energy will cause regenerative current to flow out of the motor and back to the power source. When using a battery, this current will recharge the battery and create a dynamic braking effect. When a power supply is used, the current will not be able to flow back to the source. Without a return path, the regenerative current can cause the voltage to rise to a dangerous level for the electronics.

Connection to Chassis

Note 4: For improved EMI immunity and reduced emissions, it is recommended to connect the controller's bottom plate to the system's chassis. Note that the integrated controller's ground is not DC-electrically connected to the plate. However, there is a capacitor between the controller's ground and the bottom plate, providing AC conductivity.

Avoid Alternate Ground Paths

Note 5: Be cautious not to create a path between the ground pins on the I/O connector and the battery's negative terminal. An internal connection already exists between the battery's negative pole and the control ground. Avoiding an additional external connection is highly recommended, as this could allow current to circulate in the signal ground, potentially introducing noise into low-power signals. If the main power ground terminal becomes loose or disconnected, very high current from the motor may flow through the signal ground wire, causing damage.

Electrostatic Discharge Protection

In accordance to IEC 61800-5-2, Roboteq Motor Controllers are designed to withstand ESD up to 6kV contact and 8kV air gap.

Precautions When Connecting PC via USB

Note 6: Always use a USB isolator to protect both the drive and the PC against potential electrical damage. When using a portable PC, operate it on battery power to avoid creating an accidental return ground path via the charger.

Controller Mounting

The drive should be mounted in such a way that its bottom surface makes direct contact with a metallic surface, such as the system chassis or cabinet. This will assist in dissipating the heat generated during the operation of the controller. It's important to note that the nominal and peak ampere values documented in the datasheet can only be fully achieved with adequate cooling.

Single Channel Wiring

On the Single Channel GBLG2660TxS, each of the motor wires must be connected to both output tabs labeled with the same letter, as shown in figure 3. The sensors connected to Channel one will be used for the motor's operation. Please note that if the drive is ordered as single-channel and is received with the metallic bars preinstalled, the motor must be connected only in one of the two channels.

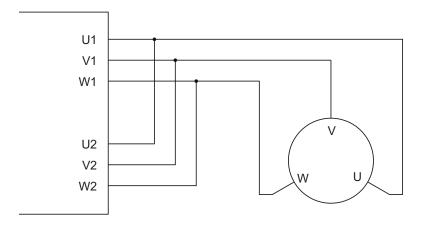
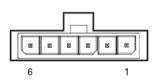


FIGURE 3. Single Channel Wiring Diagram

Caution


This wiring must be done only on the single channel version of the controller. Paralleling the wires on a dual channel product will cause permanent damage. Verify that your controller is an GBLG2660TxS before you wire in this manner.

Hall Sensors Connection

Connection to the Hall Sensors is done using a 6-pin Molex Microfit 3.0, ref. 43645.

Pin assignment are in Table 1, below.

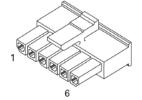
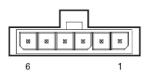


FIGURE 4. Hall Sensors Connector

TABLE 1.


Pin Number	1	2	3	4	5	6
Signal	Ground	Hall A	Hall B	Hall C		5V

Important Note

Hardware revisions prior to 1.4 have a maximum supported Hall sensor frequency of 16 kHz.

Connection to SSI Absolute Encoder

Both multi-turn and single-turn SSI sensors are supported in sinusoidal mode, with pure binary encoding (no Gray code, offset binary, etc.) and a resolution of up to 47 bits. These SSI sensors must be connected to the 6-pin Molex connectors, which are also used for Hall sensors. The specific sensor connected to the Molex connectors can be determined through the controller's configuration settings. The controller employs differential signals for both clock and data. The Molex connector pin assignment for the SSI sensor is shown in Table 2.

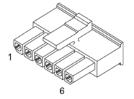


FIGURE 5. Hall Sensor Connector Used for SSI Encoders

TABLE 2.

Pin Number	1	2	3	4	5	6
Signal	Ground	Data +	Data –	Clock +	Clock -	5V

Connection to Analog Sin/Cos Absolute Encoder

The GBLG2660Txx features four high-speed analog inputs, designed to capture the absolute angular position data from either resolvers or magnetic sensors that have sin/cos voltage outputs. For the sin/cos sensors, the signal must range from 0 to 5V, with 0 at 2.500V. Please note that for proper operation, the number of sensor poles must not exceed the number of motor poles pairs. Table 3, below, shows the signals assignment on the 25-pin connector.

TABLE 3.

Signal	Pin Number	Pin Name
Sin1	9	ASIN1
Cos1	10	ACOS1
Sin2	24	ANA7/ASIN2
Cos2	12	ANA8/ACOS2

Connecting Resolver

The wiring for the resolver is similar to a Sin/Cos sensor with the addition of an excitation signal. Figure 6, below, shows the necessary connections.

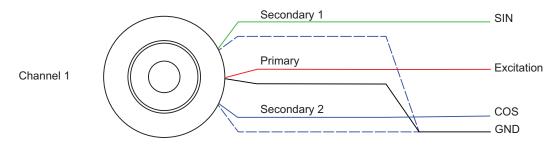


FIGURE 6. Resolver Connections

Table 4, below, shows the signals assignment on the 15-pin connector.

TABLE 4.

Signal	Pin Number	Pin Name
Sin1	9	ASIN1
Cos1	10	ACOS1
Sin2	24	ANA7/ASIN2
Cos2	12	ANA8/ACOS2
Excitation	17	ANA4/EXC

Important Note

Sensor error detection should be disabled when performing motor/sensor setup through USB, as the protection might be triggered due to signal interference. This interference will not affect the motor/sensor setup process or motor control.

Commands and I/O Connections

Connection to external devices, such as RC radios, microprocessors, joysticks, sensors, and low current actuators, is done through the DB25 connector. The controller is equipped with general-purpose inputs that can be configured to function as digital, analog, or pulse inputs. Additionally, it features open collector outputs capable of driving resistive or inductive loads of up to 1 A. The pin assignment can be found on table 5.

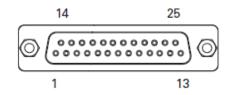


FIGURE 7. Main Connector Pin Locations

TABLE 5.

Connector								
Pin	Power	Dout	Com	Pulse	Ana	Dinput	STO	Encoder
1	GND							
14	5VOut							
2			RS TxD					
15				RC1 (2)	ANA1	DIN1	STO1 (1)	
3			RS RxD					
16				RC2 (2)	ANA2	DIN2	STO2 (1)	
4				RC3	ANA3	DIN3		
17				RC4 (3)	ANA4/EXC	DIN4		
5	GND							
18		DOUT1						
6		DOUT2						
19		DOUT3						
7		DOUT4						
20			CANH					
8			CANL					
21				RC5 (4)	ANA5	DIN5		ENC2A
9					ASIN1	DIN9		
22				RC6 (4)	ANA6	DIN6		ENC2B
10					ACOS1	DIN10		
23			485+					
11			485-					
24				RC7	ANA7/ASIN2	DIN7		ENC1A
12				RC8	ANA8/ACOS2	DIN8		ENC1B

TABLE 5.

Connector Pin	Power	Dout	Com	Pulse	Ana	Dinput	STO	Encoder
25	PwrCtrl							
13	GND							

Note 1: STO jumper must be removed for STO signals to be active

Note 2: Not compatible with MultiPWM inputs.

Note 3: Input has high internal capacitance. Not recommended for capture of fast pulses

Note 4: Not compatible with multiPWM when SSI sensor is used.

Enabling Analog Commands

The Analog command mode is disabled by default. To enable this mode, use the PC utility and set "Analog" in Command Priority 2 or 3 (leave "Serial" as priority 1). Note that by default, additional safety features are enabled, preventing the motor from starting unless the potentiometer is centered, or if the voltage is below 0.25V or above 4.75V. Use the PC utility to enable and assign analog inputs.

Connecting Thermistors

NTC temperature sensors can be connected to the controller's analog inputs. This enables reading of motor temperature through the controller's runtime variables and allows for active temperature protection. This connection can be achieved by using a pull-up resistor with a value equal to the thermistor's resistance between the analog input and the controller's 5V output. For more information about motor temperature readings and controller parameterization, please refer to the Roboteq Controller's User Manual.

USB communication

Use the USB only for configuration, monitoring, and troubleshooting purposes. USB is not a reliable method of communication and can lead to disconnections when used in electrically noisy environments. These disconnections often require resetting the USB connection or even the controller. For more reliable interfacing with a computer, always opt for RS232 communication.

Important Note

Always use a USB isolator to protect both the drive and the PC from potential electrical damage. When using a portable PC, operate it on battery power to avoid an accidental ground path return via the charger.

CAN Communication

CAN is the GBLG2660Txx's primary and recommended communication interface. Up to 127 drives can be networked on a twisted pair network up to 1000m long and at speeds up to 1Mbit/s. Roboteq support four CAN protocols:

- CANOpen for interoperability with other vendor's DS301 and DS402 compliant devices
- RoboCAN, a simple and effective peer to peer meshed network protocol

- MiniCAN, a simplified subset of CANOpen PDOs
- Raw CAN, a low-level system used with scripting for constructing and parsing CAN frames to handle any protocols

TABLE 6. CANOpen Communications Specification

Feature	Value
Motion Network type	CAN, CANOpen
CANOpen Standards Support	DS301, DS402
Operating Modes	Cyclic sync torque, cyclic sync velocity, cyclic sync position, profile position, profile velocity, profile torque modes, homing
Process Data Objects (PDO)	Cyclic sync and free run modes.
	Cyclic messages can be set for 20 objects on 4 maps

RS485 Communication

RS485 is a robust industry standard for serial communication, well-suited for long distances and electrically noisy industrial settings. It uses balanced signaling for enhanced stability, allowing the connection of multiple receivers on a single network. The protocol supports half-duplex operation and is particularly compatible with Modbus. The 25-pin connector features designated pins for RS485+ and RS485-.

Optional Ethernet Communication

Ethernet communication is only available on the E versions of the controller. The connection port is located on the top of the unit for easy and rapid access. Communication occurs via TCP/IP. Commands can be in Serial over TCP and Modbus TCP. Serial over TCP is the preferred method to access all native commands.

Two LEDs are present on the Ethernet jack, as shown in Figure 8. The left Yellow LED will be On when operating as 100 Mbps connection and Off when as 10 Mbps. The right Green LED will blink when data activity is present.

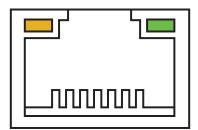


FIGURE 8. Ethernet LED Configuration

Important Note

TCP Mode and CAN Mode cannot work in conjunction on "E" type controllers; only one can be active at a time. By default, TCP Mode is enabled and CAN Mode is disabled, allowing for a plug & play TCP connection. To switch to CANOpen, the user must manually disable TCP Mode and enable CAN Mode. To revert to Ethernet, TCP Mode must be enabled and CAN Mode disabled by the user.

Status LED Flashing Patterns

After the controller is powered on, the Power LED will turn on, indicating that the controller is active. The Status LED will flash at two-second intervals. The flashing pattern and color provide information on operating status or exceptions.

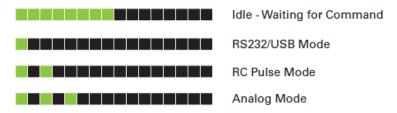
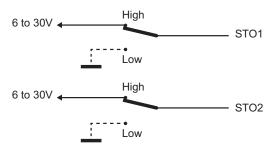


FIGURE 9. Normal Operation Flashing Patterns

FIGURE 10. Exception or Fault Flashing Patterns

Additional information about the controller's status and fault conditions can be obtained by monitoring the controller through the PC utility. The Communication LED indicates the status of USB and CAN Bus connectivity.


FIGURE 11. Communication LED Flashing Patterns

Safe Torque Off - STO

Safe Torque Off (STO) is a secure method for switching the controller into a state where no torque is generated, regardless of whether the controller is operating normally or is faulty. The STO functionality is achieved through redundant circuitry, incorporated into the STO1 and STO2 inputs of the controller. For the controller to operate normally, both STO inputs must be supplied with a voltage ranging from 6 to 30V. The controller performs a self-test of the STO circuitry every time it powers on, or when both STO inputs go high. If the STO circuitry is found to be functioning properly, the controller will allow the motor to be energized. In the event of an STO failure or if not both STO inputs are in a high state, the power stage will be cut off. Since STO is a hardware implementation and has been verified and validated by Roboteq, it can be trusted to bring the motor to a no-torque condition without the need for an external relay to cut power to the motor.

Figure 12 illustrates the STO operation. To properly trigger the STO, both STO inputs must be in a high state. To properly release the STO, both STO inputs must be low. Having only one of the two STO inputs in a high state will trigger the "STO fault" alarm.

STO1	STO2	Motors Output
Low	Low	Disabled
High	Low	Disabled/Fault
Low	High	Disabled/Fault
High	High	Enabled

FIGURE 12. STO input levels effects on controller output

Warning

Activating STO causes the motor to float and cease torque generation. Since the motor will not be actively braked, it will decelerate solely due to the system's friction. In mobile robot applications, the robot may continue moving for several meters before coming to a complete stop. For safe operation, additional braking measures should be implemented when STO is enabled, such as utilizing a mechanical or electrical brake. Roboteq offers one solution in the form of the SBSxxxx Safety Electric Brake Switch series, which quickly stops the motor by shorting its phases when STO is triggered.

For more information about STO operation, refer to the STO manual.

Electrical Specifications

Absolute Maximum Values

The values in Table 8 should never be exceeded, as doing so may result in permanent damage to the controller.

TABLE 7.

Parameter	Measure Point	Min	Max	Units
Vmot Voltage	Ground to Vmot wire	-0.5 (1)	63 (2)	VDC
Power Control Voltage	Ground to Vmot wire	-0.5 (1)	63 (2)	VDC
Motor Leads Voltage	Ground to U/V/W wires		63 (3)	VDC
Digital Output Voltage	Ground to Output pins	-0.5	30	VDC
General Purpose Inputs Voltage (4)	Ground to Input pins	-0.5	30	VDC
Hall Inputs voltage (5)	Ground to Hall A/B/C pins	-0.2	5.5	VDC
RS232 Tx Voltage	Ground to Tx pin	-12	12 (6)	VDC
RS232 Rx Voltage	Ground to Rx pin	-16	16	VDC
RS485 A/B Voltage	Ground to A/B pins	-10	10	VDC
RS485 Common Mode Voltage (7)		-7	12	VDC
CAN High/Low Voltage	Ground to CANH/CANL pins	-12	12	VDC
CAN Bus Dominant Common Mode Voltage (8)		1.5	3.5	VDC
CAN Bus Recessive Common Mode Voltage (9)		-12	12	VDC

Note 1: The drive does not have reverse battery protection. Applying a negative voltage on Vmot will result in power stage destruction

Note 2: Operating above 63 V will damage the drive. The Vmot voltage can also increase when the motor regenerates. Additional countermeasures, such as a shunt regulator or similar devices, should be used to dissipate regenerative energy if necessary.

Note 3: Maximum motor voltage including regeneration. Never inject a DC voltage from a battery or other fixed source.

Note 4: Ranges apply to all general-purpose inputs that are configured to accept analog, digital, or pulse signals, including encoder inputs that are mapped to the DB port.

Note 5: Ranges apply to the Hall inputs that are mapped to the Molex connector.

Note 6: No voltage must be injected into the Tx pin.

Note 7: The average voltage of A and B lines $(\frac{V_A + V_B}{2})$, measured relative to the receiver's ground.

Note 8: The average voltage of CANH and CANL lines $(\frac{CAN_H + CAN_L}{2})$, referenced to system ground, when transmitting a Dominant state.

Note 9: The average voltage of CANH and CANL lines $(\frac{CAN_n + CAN_L}{2})$, referenced to system ground, when transmitting a Recessive state.

Power Stage Electrical Specifications (at 25°C ambient)

TABLE 8.

Parameter	Measure point	Model	Min	Тур	Max	Units
Vmot Voltage	Ground to VBat	All	14		60	Volts
Motor Leads Voltage	Ground to U, V, W wires	All	0		60 (1)	Volts
Power Control Voltage	Ground to Power	All	12		60	Volts
	Control wire					
Over Voltage protection range	Ground to VBat	All	5	60 (2)	60	Volts
Under Voltage protection range	Ground to VBat	All	0	10 (2)	50	Volts
Input Capacitance	Ground to VBat	All		12500		uF
Idle Current Consumption	VBat or Pwr Ctrl wires	All	50	100 (3)	150	mA
ON Resistance (Excluding	VBat to U, V or W.	GBLG2660Tx		1.2		mOhm
Wire resistance)	Ground to U, V or W	GBLG2660TxS		0.6		mOhm
Max Current for 30s	Motor current	GBLG2660Tx			180	Amps
		GBLG2660TxS			360	Amps
Continuous Max Current per	Motor current	GBLG2660Tx			120 (4)	Amps
channel		GBLG2660TxS			240 (4)	Amps
Current Limit range	Motor current	GBLG2660Tx	10	120 (5)	180	Amps
		GBLG2660TxS	20	240 (5)	360	Amps
Stall Detection Amps range	Motor current	GBLG2660Tx	10	180 (2)	180	Amps
		GBLG2660TxS	20	360 (2)	360	Amps
Stall Detection timeout range	Motor current	All	1	500 (6)	65000	ms
Short Circuit Detection threshold (7)	Between Motor wires or Between Motor	GBLG2660Tx			288 (8)	Amps
	wires and round	GBLG2660TxS			432 (8)	Amps
	Between Motor wires and Vmot	All	No Pro result	tection. Per	manent dan	nage will
Overvoltage category				III (9)		

- Note 1: Maximum voltage in normal operation, including regeneration.
- Note 2: Factory default value. Adjustable in 0.1V increments
- Note 3: Current consumption is lower when higher voltage is applied to the controller's VBat or PwrCtrl wires
- Note 4: Limited by case temperature. Current may be higher with better cooling
- Note 5: Factory default value. Adjustable in 0.1A increments
- Note 6: Factory default value. Time in ms that Stall current must be exceeded for detection
- Note 7: Related to any high-current event that may not necessarily be produced by an actual short circuit.
- Note 8: RMS value
- Note 9: The product was evaluated for use in and under the provisions for installation in an Overvoltage Category III environment.

Command, I/O and Sensor Signals Specifications

TABLE 9.

Parameter	Measure point	Min	Тур	Max	Units
Main 5V Output Voltage	Ground to 5V pins on	4.6	4.75	4.9	Volts
5V Output Current	5V pins on RJ45 and DSub15			200 (1)	mA
Digital Output Voltage	Ground to Output pins			60	Volts
Output On resistance	Output pin to ground		0.25	0.5	Ohm
Output Short circuit threshold	Output pin	1.7		3.5	Amps
Digital Output Current (2)	Output pins, sink current			1.5	Amps
Input Impedances (except DIN11-19)	AIN/DIN Input to Ground		53		kOhm
Digital Input 0 Level	Ground to Input pins	-1		1	Volts
Digital Input 1 Level	Ground to Input pins	3.8		30	Volts
Analog Input Range	Ground to Input pins	0		5.1	Volts
Analog Input Precision	Ground to Input pins		0.5		%
Analog Input Resolution	Ground to Input pins		1		mV
Analog Input Floating Voltage (3)	Ground to Input pins	100		300	mV
Pulse durations	Pulse inputs	20000		10	us
Pulse repeat rate	Pulse inputs	50		250	Hz
Pulse Capture Resolution	Pulse inputs		1		us
Minimum Pulse on or Pulse off duration	Pulse inputs	25			us
Frequency Capture	Pulse inputs	100		1000	Hz
Encoder Frequency	Encoder input pins			600 (4)	kHz
Encoder Inputs Voltage	Ground to Encoder inputs of Molex connector			24	Volts
SSI Frequency (5)	SSI input pins	330		10800	kHz
SSI Total Number of Bits (6)				47	Bits
SSI Singleturn Number of Bits				31	Bits
SSI Multiturn Number of Bits				31	Bits
Hall Inputs Voltage	Ground to Encoder inputs of Molex connector			5	Volts
Resolver Excitation Frequency	Resolver Exc. Output		8		KHz

TABLE 9.

Parameter	Measure point	Min	Тур	Max	Units
Resolver Excitation Voltage	Resolver Exc. Output		3.4		V
Zrs @ 8KHz (7)	Resolver Exc. Output 4.68				Ohm

Note 1: Sum of all 5V Out outputs

Note 2: Outputs are Open Drain. They pull to ground when on and float when off. Load must be connected between output and positive voltage

Note 3: The minimum voltage that can be read when the input is configured as an analog input and left floating.

Note 4: The maximum supported encoder PPR is proportional to the motor max speed and can be calculated as follows:

 $Max_{PPR} = 60 \times 600000/Max_{RPM}$

Note 5: The "First Clock Delay" function is not supported.

Note 6: The combined number of Singleturn and Multiturn bits must not exceed 47.

Note 7: The minimum supported Rotor Impedance with Stator shorted (Zrs) at 8 kHz. Ensure that the motor drive can supply efficient current to the resolver sensor by staying within the specified limits. If the Rotor Impedance is a complex number, the absolute value should be calculated as follows: |Zrs| = sqrt(real² + imag²).

Operating & Timing Specifications

TABLE 10.

Parameter	Measure Point	Min	Typical	Max	Units
Command Latency	Command to output change	0	0.5	1	ms
Maximum PWM duty cycle	Motor Output			93.8	%
Current Loop update rate	Internal		16000		Hz
Closed Loop update rate	Internal		1000		Hz
Torque Mode Resolution	Internal		0.1		А
Speed Mode Resolution	Internal		1		RPM
Position Mode Resolution	Internal		1		Counts
RS232 baud rate	Rx & Tx pins		115200 (1)		Bits/s
RS232 Watchdog timeout	Rx pin	1 (2)		65000	ms

Note 1: 115200, 8-bit, no parity, 1 stop bit, no flow control

Note 2: May be disabled with value 0

Motor Characteristics Requirement for FOC current control

For proper FOC current control and motor operation under sinusoidal commutation, it is necessary for the motor to meet a minimum load inductance, minimum time constant (L/R) and maximum electric operating speed requirements. The minimum required inductance is necessary to ensure low Total Harmonic Distortion (THD) of the motor current. Furthermore, to achieve proper current control and stability, the controller's current loop sampling rate will determine the minimum permissible motor time constant and the maximum operating electric speed.

TABLE 11.

Parameter	Input DC Voltage (V)	Value	Units
Minimum load phase inductance (1)	24	40	uH
	48	60	uH
	60	80	uH
Minimum load inductance/resistance ratio (1)	0 - 60	0.063	msec
Maximum theoretical electric speed (2) (3)	0 - 60	96000	RPM

Note 1: Star connected three phase load considered. In case the motor phase inductance does not fulfill the above requirements (minimum phase inductance and inductance/resistance ratio) an external AC inductor with proper inductance value is recommended to be added.

Note 2: Maximum rotor speed is calculated from the maximum operating electric speed and pole pairs. For example, in a motor with 4 pole pairs the maximum operating rotor speed is 96000/4 = 24000 rpm

Note 3: The maximum electrical speed is theoretical and requires minimum sensor latency

Scripting

TABLE 12.

Parameter	Measure Point	Min	Typical	Мах	Units
Scripting Flash Memory	Internal		32000		Bytes
Integer Variables	Internal		4096		Words (1)
Boolean Variables	Internal		8192		Symbols
Execution Speed (2)	Internal	30,000		70,000	Lines/s

Note 1: 32-bit words

Note 2: Execution Speed was calculated based on low communication load with the controller. In high communication workload, minimum time might be reduced drastically.

Thermal Specifications

TABLE 13.

Parameter	Measure Point	Min	Тур	Max	Units
Heatsink Temperature	Heatsink			75 (1)	°C
Thermal Protection range	PCB	0		90 (2)	°C
Power Dissipation	Case			70	Watts
Thermal resistance	Power MOSFETs to case			0.8	°C/W
Humidity	Case			93 (3)	%
Ambient temperature	Ambient	-10		70	°C
Storage temperature	Ambient	-20		80	°C
Pollution Degree	-	PD2 (4)			

TABLE 13.

Parameter	Measure Point	Min	Тур	Max	Units
Fast fuse to install (5)	GBLG2660T		Check Note 6	2 x 180	Amps
	GBLG2660TxS		Check Note 6	2 x 180	Amps
Overload motor protection	-	Check no	ote 7		

Note 1: The motor drive features overtemperature protection, derating current and power when internal temperature reaches

85°C. Keep the cooling plate temperature below 75°C to maintain rated current at maximum ambient temperatures.

Note 2: Max allowed power will start degrade from the selected value.

Note 3: Non-condensing

Note 4: The product was designed to be used in a pollution 2 degree environment.

Note 5: Power source must be capable to blow the fuse instantly in case of short circuit. There are two power terminal tabs. One fuse should be installed for each channel.

Note 6: Based on application requirements

Note 7: Current limiting mechanism available through firmware. External overload motor protection can be used if required (provided by user)

STO Specifications

TABLE 14.

Parameter	Measure Point	Min	Тур	Max	Units
STO Input High Level	Ground to STO input pin		6	30 (1)	Volts
STO Input Low Level	Ground to STO input pin		0	1	Volts
STO Response Time	Input to output change		5		msec
STO Self Check Time	Internal		1080		msec
Cable Length	2				m
EMC Immunity	According to IEC 61800-3 and IEC 61800-5-2 Annex E				
CE Declaration	Available at www.roboteq.com				

Mechanical Specifications

TABLE 15.

Parameter	Measure Point	Min	Typical	Max	Units
Weight	Board		2940 (6.5)		g (lbs)
Power Terminals	Terminal		M6		
Torque	D-sub standard connector		0.4 (3.54)		Nm (in-lbs)
Torque	Terminal block		0.8 (7.10)		Nm (in-lbs)
Torque	Mounting screws (4/M2.5)		0.36 (3.2)		Nm (in-lbs)
IP rating			IP40		

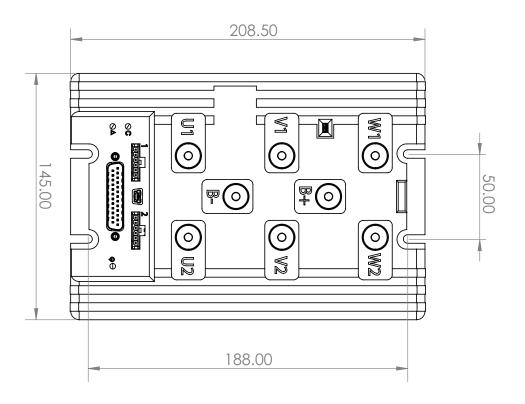


FIGURE 13. GBLG2660Txx top view and dimensions

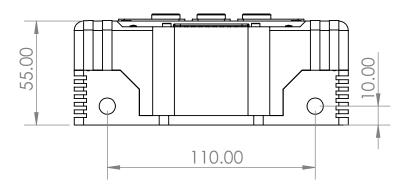


FIGURE 14. GBLG2660Txx side view and dimensions

Conditions of Acceptability for UL recognition (CoA)

For use only in (or with) complete equipment where the acceptability of the combination is determined by UL LLC

- 1. Model GBLG2660Txx Series is suitable for factory wiring only. The suitability of the connections to the end use system shall be determined in the end use.
- 2. Series GBLG2660Txx was not considered to have any accessible circuits. All circuits shall be enclosed in the end use application.
- 3. These models were tested with an additional heat sink, made of aluminum, dimensions 256 mm x 304.8 mm x 73.8 mm, 24 cooling fins.
- 4. Considerations shall be given in the end-product evaluation to the conduct of a Temperature Test may be required, if another heat sink is used.
- Integral solid state short circuit protection does not provide branch circuit protection. Branch circuit protection must be provided in accordance with the National Electrical Code and any additional local codes.
- 6. Integral solid state short circuit protection does not provide branch circuit protection. Branch circuit protection must be provided in accordance with the Canadian Electrical Code, Part I.
- 7. Use in a Pollution Degree 2 environment.
- 8. Suitable for use on a circuit capable of delivering not more than 5000 RMS symmetrical amperes, 60 DC volts maximum, when protected by 180A fuses per input line.